bienvenido

sábado, 11 de febrero de 2012

Regla de Octeto!!!

La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble,1 los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares.
Existen diferentes tipos de enlace químico, basados todos ellos, como se ha explicado antes en la estabilidad especial de la configuración electrónica de los gases nobles, tendiendo a rodearse de ocho electrónes en su nivel más externo. Este octeto electrónico puede ser adquirido por un átomo de diferentes maneras:
  • Enlace iónico.
  • Enlace covalente.
  • Enlace metálico.
  • Enlaces intermoleculares.
Es importante saber, que la regla del octeto es una regla práctica aproximada que presenta numerosas excepciones, pero que sirve para predecir el comportamiento de muchas sustancias.
En la figura se muestran los 4 electrones de valencia del carbono, creando dos enlaces covalentes, con los 6 electrones en el último nivel de energía de cada uno de los oxígenos, cuya valencia es 2. La suma de los electrones de cada uno de los átomos son 8, llegando al octeto. Nótese que existen casos de moléculas con átomos que no cumplen el octeto y son estables igualmente
 
.

Enlace Ionico!!!

Un enlace iónico es la una unión de átomos que resulta de la presencia de atracción electrostática entre los iones de distinto signo, es decir, uno fuertementeelectropositivo (baja energía de ionización) y otro fuertemente electronegativo (alta afinidad electrónica). Eso se da cuando en el enlace, uno de los átomos capta electrones del otro.
Dado que los elementos implicados tienen elevadas diferencias de electronegatividad, este enlace suele darse entre un compuesto metálico y uno no metálico. Se produce una transferencia electrónica total de un átomo a otro formándose iones de diferente signo. El metal dona uno o más electrones formando iones con carga positiva o cationes con una configuración electrónicaestable. Estos electrones luego ingresan en el no metal, originando un ion cargado negativamente o anión, que también tiene configuración electrónica estable. Son estables pues ambos, según laregla del octeto adquieren 8 electrones en su capa más exterior. La atracción electrostática entre los iones de carga opuesta causa que se unan y formen un compuesto.
Los compuestos iónicos forman redes cristalinas constituidas por iones de carga opuesta, unidos por fuerzas electrostáticas. Este tipo de atracción determina las propiedades observadas. Si la atracción electrostática es fuerte, se forman sólidos cristalinos de elevado punto de fusión e insolubles en agua; si la atracción es menor, como en el caso del NaCl, el punto de fusión también es menor y, en general, son solubles en agua e insolubles en líquidos apolares como el benceno.
Definición
En una unión de dos átomos por enlace iónico, un electrón abandona el átomo menos electronegativo y pasa a formar parte de la nube electrónica del más electronegativo. El cloruro de sodio (la sal común) es un ejemplo de enlace iónico: en él se combinan sodio y cloro, perdiendo el primero un electrón que es capturado por el segundo:Se denomina enlace iónico al enlace químico de dos o más átomos cuando éstos tienen una diferencia de electronegatividad de ΔEN = 2 o mayor. Este tipo de enlace fue propuesto por Walther Kossel en 1916.
NaCl → Na+Cl-
De esta manera forman dos iones de carga contraria: un catión (de carga positiva) y un anión (de carga negativa). La diferencia entre las cargas de los iones provoca entonces una fuerza de interacción electromagnética entre los átomos que los mantiene unidos. El enlace iónico es la unión en la que los elementos involucrados aceptarán o perderán electrones.
En una solución, los enlaces iónicos pueden romperse y se considera entonces que los iones están disociados. Es por eso que una solución fisiológica de cloruro de sodio y agua se marca como: Na+ + Cl-, mientras que los cristales de cloruro de sodio se marcan: Na+Cl- o simplemente NaCl.



http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/enlaces/ionico.htm

Números Cuantitativos!!!

Los números cuantitativos indican la cantidad en número, medida, orden, etc., son: primario, a; secundario, a; terciario, a; cuaternario, a; septuagenario, a; etc., formados todos con el sufijo -ario, a, sin alteración alguna, y traducidos directamente del latín (primarius, secundarius, etc.)
Nótese la diversidad de acepciones que tienen, pues mientras primario, secundario, etc., indican orden de importancia,sexagenario, septuagenario, etc., denotan número de años, y quinario, septenario, novenario, son verdaderos sustantivos que significan reunión de cinco, siete, nueve unidades.

Electrón Diferencial!!

"Se llama electrón diferencial, al electrón que se añade al pasar de un elemento al siguiente. Dicho de otra forma, al ultimo e- de un átomo."
Es decir, al pasar de un atomo a otro en la tabla periodica aumenta en 1 el numero Z (atomico) lo que implica un aumento de 1 en el numero de protones.

Como el proton es una carga positiva, esto implica un aumento en una carga positiva y como el atomo es electricamente neutro (a menos que sea un ion) entonces tiene que agregarse un electron negativo.

Es decir que el electron diferencial es el electron mas alejado o el ultimo electron que se "agrega" al atomo.
  • hace 3 años

Principio de Aufbau

El principio de Aufbau contiene una serie de instrucciones relacionadas a la ubicación de electrones en los orbitales de un átomo. El modelo, formulado por el físico Niels Bohr, recibió el nombre de Aufbau (del alemán Aufbauprinzip: principio de construcción) en vez del nombre del científico. También se conoce popularmente con el nombre deregla del serrucho.
Los orbitales se 'llenan' respetando la regla de Hund, que dice que ningún orbital puede tener dos electrones antes que los restantes orbitales de la misma subcapa tengan al menos uno. Se comienza con el orbital de menor energía.
Primero debe llenarse el orbital 1s (hasta un máximo de dos electrones), esto de acuerdo con el número cuántico l.
Seguido se llena el orbital 2s (también con dos electrones como máximo).
La subcapa 2p tiene tres orbitales degenerados en energía denominados, según su posición tridimensional, 2px, 2py, 2pz. Así, los tres orbitales 2p puede llenarse hasta con seis electrones, dos en cada uno. De nuevo, de acuerdo con la regla de Hund, deben tener todos por lo menos un electrón antes de que alguno llegue a tener dos.
Y así, sucesivamente:
1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6

Numero Atómico!!!

El número atómico es el número total de protones en el núcleo del átomo. Se suele representar con la letra Z (del alemán: Zahl, que quiere decir número). El número atómico es característico de cada elemento químico y representa una propiedad fundamental del átomo: su carga nuclear.
En 1913 Henry Moseley demostró la regularidad existente entre los valores de las longitudes de onda de los rayos X emitidos por diferentes metales tras ser bombardeados con electrones, y los números atómicos de estos elementos metálicos. Este hecho permitió clasificar a los elementos en la tabla periódica en orden creciente de número atómico. En la tabla periódica los elementos se ordenan de acuerdo a sus números atómicos en orden creciente.

Orbitales!!

n 1.927 pudo comprobarse experimentalmente la hipótesis de De Broglie al observarse un comportamiento ondulatorio de los electrones en los fenómenos de difracción.
Un electrón que se mueve alrededor de núcleo puede considerarse ligado a él y podemos describir su movimiento ondulatorio mediante la ecuación de ondas.
Con esta idea, Schrödinger realizó un estudio matemático del comportamiento del electrón en el átomo y obtuvo una expresión, conocida como ecuación de Schrödinger.
Podemos decir que un orbital atómico es una zona del espacio donde existe una alta probabilidad (superior al 90%) de encontrar al electrón. Esto supone considerar al electrón como una nube difusa de carga alrededor del núcleo con mayor densidad en las zonas donde la probabilidad de que se encuentre dicho electrón es mayor.
Para que la ecuación de Schrödinger tenga significado físico es necesario imponerle unas restricciones que son conocidas como números cuánticos, que se simbolizan de la misma forma que los obtenidos en el modelo atómico de Bohr:
Números cuánticos
n:
número cuántico principal
l:
número cuántico del momento angular orbital
m:
número cuántico magnético
s:
número cuántico del spin electrónico.
Estos números cuánticos sólo pueden tomar ciertos valores permitidos:
Valores permitidos
para n:
números enteros 1, 2, 3,.
para l:
números enteros desde 0 hasta (n-1)
para m:
todos los números enteros entre +l y -l incluido el 0
para s:
sólo los números fraccionarios -1/2 y +1/2
Los valores del número cuántico n indican el tamaño del orbital, es decir su cercanía al núcleo.
Los valores del número cuántico
 l definen el tipo de orbital:
• Si l= 0 el orbital es del tipo s
• Si
 l= 1 los orbitales son del tipo p
• Si
 l = 2 los orbitales son del tipo d
• Si
 l= 3 los orbitales son del tipo f
Las letras s, p, d, f identificativas de los tipos de orbitales proceden de los nombres que recibieron los distintos grupos de líneas espectrales relacionadas con cada uno de los orbitales:
• sharp : líneas nítidas pero de poca intensidad
• principal : líneas intensas
• difuse : líneas difusas
• fundamental : líneas frecuentes en muchos espectros
Son posibles otros tipos de orbitales como g, h, ...pero los elementos que conocemos, en sus estado fundamental, no presentan electrones que cumplan las condiciones cuánticas necesarias para que se den estos otros tipos de orbitales.
Los valores del número cuántico
 m hacen referencia a la orientación espacial del orbital.
El cuarto número cuántico,
 s, que define a un electrón en un átomo hace referencia al momento angular de giro del mismo.
El conjunto de los cuatro números cuánticos definen a un electrón, no pudiendo existir en un mismo átomo dos electrones con los cuatro números cuánticos iguales, por lo que una vez definido el tamaño, el tipo y la orientación de un orbital con los tres primeros números cuánticos, es decir los valores de n, l y m, sólo es posible encontrar un máximo de dos electrones en dicha situación que necesariamente tendrán valores diferentes de su número cuántico de spin.
Veamos los orbitales posibles según el valor de los números cuánticos:
Si n = 1 entonces el número cuantico l sólo puede tomar el valor 0 es decir sólo es posible encontrar un orbital en el primer nivel energético en el que puede haber hasta dos electrones (uno con spin +1/2 y otro con spin -1/2). Este orbital, de apariencia esférica, recibe el nombre de 1s:
[1s]
Si n = 2 , el número puede tomar los valores 0 y 1, es decir son posibles los tipos de orbitales s y p. En el caso de que sea l = 0, tenemos el orbital llamado 2s en el que caben dos electrones (uno con spin +1/2 y otro con spin -1/2):
[2s]
Si = 1 tendremos orbitales del tipo p de los que habrá tres diferentes según indicarían los tres valores (+1, 0, -1) posibles del número cuántico m, pudiendo albergar un máximo de dos electrones cada uno, con valores de spin +1/2 y -1/2, es decir seis electrones como máximo:
[2px] [2py] [2pz]
Si n = 3 son posibles tres valores del número cuántico l: 0,1 y 2. Si = 0 tendremos de nuevo un orbital del tipo s:
[3s]
si l = 1 tendremos los tres orbitales del tipo p:
[3px] [3py] [3pz]
y si = 2 los orbitales serán del tipo d, de los que habrá cinco diferentes según indican los cinco valores posibles (+2, +1, 0, -1, -2) para el número cuántico m y que podrán albergar un total de diez electrones:
[3dxy] [3dxz] [3dyz] [3dx2-y2] [3dz2]
Si = 4, son posibles cuatro tipos de orbitales diferentes:
De tipo s (para l = 0):
[4s]
De tipo p (para l = 1):
[4px] [4py] [4pz]
De tipo d (para l = 2):
[4dxy] [4dxz] [4dyz] [4dx2-y2] [4dz2]
De tipo f (para = 3) de los que habrá siete diferentes según indican los siete valores posibles (+3, +2, +1, 0 -1, -2, -3) del número cuántico m, que podrán albergar un total de catorce electrones: